SK50GB065

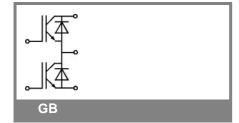
SEMITOP® 2

IGBT Module

SK50GB065

Preliminary Data

Features


- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N-channel homogeneous silicon structure
 (NPT Non Punch Through IGRT)
 - (NPT-Non-Punch-Through IGBT)
- Low tail current with low temperature dependence
- Low treshold voltage

Typical Applications

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

Absolute Maximum Ratings $T_s = 25 ^{\circ}\text{C}$, unless otherwise specified						
Symbol	Conditions		Values	Units		
IGBT						
V_{CES}	T _j = 25 °C		600	V		
I _C	$T_j = 125 ^{\circ}\text{C}$ T_s	_s = 25 °C	54	Α		
	T,	s = 80 °C	40	Α		
I _{CRM}	I _{CRM} = 2 x I _{Cnom}		60	Α		
V_{GES}			± 20	V		
t _{psc}	V_{CC} = 300 V; $V_{GE} \le 20$ V; T_{j} VCES < 600 V	= 125 °C	10	μs		
Inverse D	iode					
I _F	,	_s = 25 °C	64	Α		
	T,	s = 80 °C	48	Α		
I_{FRM}	I _{FRM} = 2 x I _{Fnom}			Α		
I _{FSM}	t_p = 10 ms; half sine wave T_j	= 150 °C	200	Α		
Module						
$I_{t(RMS)}$				Α		
T_{vj}			-40 + 150	°C		
T_{stg}			-40 +125	°C		
V _{isol}	AC, 1 min.		2500	V		

Characteristics $T_s =$			25 °C, unless otherwise specified			
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_{C} = 1.4$ mA		3	4	5	V
I _{CES}	$V_{GE} = 0 V, V_{CE} = V_{CES}$	T _j = 25 °C			0,0044	mA
I_{GES}	$V_{CE} = 0 \text{ V}, V_{GE} = 20 \text{ V}$	T _j = 25 °C			240	nA
V _{CE0}		T _j = 25 °C		1,1		V
		T _j = 125 °C		1,1		V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		15		mΩ
		T _j = 125°C		19		mΩ
V _{CE(sat)}	I _{Cnom} = 60 A, V _{GE} = 15 V			2	2,5	V
		$T_j = 125^{\circ}C_{chiplev}$		2,2		V
C _{ies}				3,2		nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,3		nF
C _{res}				0,18		nF
$t_{d(on)}$				60	80	ns
t _r	$R_{Gon} = 16 \Omega$	$V_{CC} = 300V$		30	40	ns
E _{on}		I _C = 40A		1,1	1,4	mJ
^L d(off)	R_{Goff} = 16 Ω	T _j = 125 °C		220	280	ns
t _f		V _{GE} =±15V		20	26	ns
E_{off}				0,7	0,9	mJ
$R_{th(j-s)}$	per IGBT				0,85	K/W

SK50GB065

SEMITOP® 2

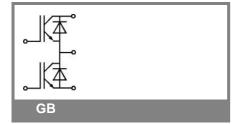
IGBT Module

SK50GB065

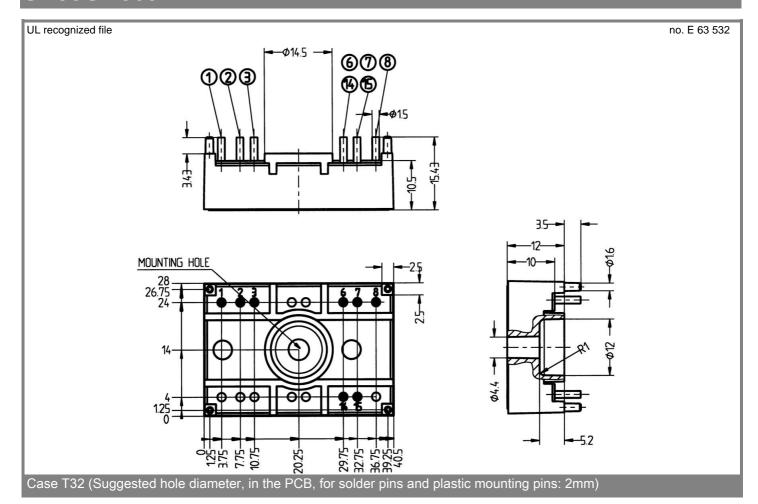
Preliminary Data

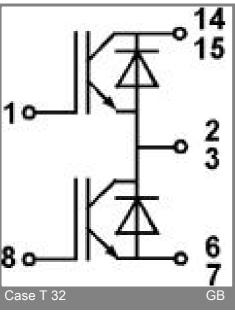
Features

- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N-channel homogeneous silicon structure (NPT-Non-Punch-Through IGBT)
- Low tail current with low temperature dependence
- Low treshold voltage


Typical Applications

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS


Characteristics								
Symbol	Conditions		min.	typ.	max.	Units		
Inverse Diode								
$V_F = V_{EC}$	I_{Fnom} = 50 A; V_{GE} = 0 V	$T_j = 25 ^{\circ}C_{\text{chiplev.}}$		1,45	1,7	V		
		T_j = 150 °C _{chiplev} .		1,4	1,75	V		
V_{F0}		T _j = 25 °C				V		
		T _j = 125 °C		0,85	0,9	V		
r _F		T _j = 25 °C				mΩ		
		T _j = 125 °C		11	16	mΩ		
I _{RRM}	I _F = 50 A	T _i = 125 °C		40		Α		
Q_{rr}	di/dt = -1000 A/μs	,		3,6		μC		
E _{rr}	V _{CC} = 300V			0,55		mJ		
$R_{th(j-s)D}$	per diode				1,1	K/W		
M _s	to heat sink				2	Nm		
w				19		g		


This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

SK50GB065

